Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Open Forum Infect Dis ; 9(10): ofac490, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2062949

ABSTRACT

Although numerous studies have evaluated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection using cycle threshold (Ct) values as a surrogate of viral ribonucleic acid (RNA) load, few studies have used standardized, quantitative methods. We validated a quantitative SARS-CoV-2 digital polymerase chain reaction assay normalized to World Health Organization International Units and correlated viral RNA load with symptoms and disease severity.

2.
BMC Public Health ; 22(1): 1361, 2022 07 15.
Article in English | MEDLINE | ID: covidwho-1938302

ABSTRACT

BACKGROUND: COVID-19 has caused over 305 million infections and nearly 5.5 million deaths globally. With complete eradication unlikely, organizations will need to evaluate their risk and the benefits of mitigation strategies, including the effects of regular asymptomatic testing. We developed a web application and R package that provides estimates and visualizations to aid the assessment of organizational infection risk and testing benefits to facilitate decision-making, which combines internal and community information with malleable assumptions. RESULTS: Our web application, covidscreen, presents estimated values of risk metrics in an intuitive graphical format. It shows the current expected number of active, primarily community-acquired infections among employees in an organization. It calculates and explains the absolute and relative risk reduction of an intervention, relative to the baseline scenario, and shows the value of testing vaccinated and unvaccinated employees. In addition, the web interface allows users to profile risk over a chosen range of input values. The performance and output are illustrated using simulations and a real-world example from the employee testing program of a pediatric oncology specialty hospital. CONCLUSIONS: As the COVID-19 pandemic continues to evolve, covidscreen can assist organizations in making informed decisions about whether to incorporate covid test based screening as part of their on-campus risk-mitigation strategy. The web application, R package, and source code are freely available online (see "Availability of data and materials").


Subject(s)
COVID-19 , Mobile Applications , COVID-19/diagnosis , COVID-19/prevention & control , COVID-19 Testing , Child , Humans , Mass Screening , Pandemics/prevention & control
3.
PLoS One ; 17(5): e0268237, 2022.
Article in English | MEDLINE | ID: covidwho-1910639

ABSTRACT

COVID-19 remains a challenge worldwide, and testing of asymptomatic individuals remains critical to pandemic control measures. Starting March 2020, a total of 7497 hospital employees were tested at least weekly for SARS CoV-2; the cumulative incidence of asymptomatic infections was 5.64%. Consistently over a 14-month period half of COVID-19 infections (414 of 820, total) were detected through the asymptomatic screening program, a third of whom never developed any symptoms during follow-up. Prompt detection and isolation of these cases substantially reduced the risk of potential workplace and outside of workplace transmission. COVID-19 vaccinations of the workforce were initiated in December 2020. Twenty-one individuals tested positive after being fully vaccinated (3.9 per 1000 vaccinated). Most (61.9%) remained asymptomatic and in majority (75%) the virus could not be sequenced due to low template RNA levels in swab samples. Further routine testing of vaccinated asymptomatic employees was stopped and will be redeployed if needed; routine testing for those not vaccinated continues. Asymptomatic SARS-CoV-2 testing, as a part of enhanced screening, monitors local dynamics of the COVID-19 pandemic and can provide valuable data to assess the ongoing impact of COVID-19 vaccination and SARS-CoV-2 variants, inform risk mitigation, and guide adaptive, operational planning including titration of screening strategies over time, based on infection risk modifiers such as vaccination.


Subject(s)
COVID-19 , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Testing , COVID-19 Vaccines , Humans , Pandemics/prevention & control , SARS-CoV-2 , Workforce
4.
Influenza Other Respir Viruses ; 16(5): 851-853, 2022 09.
Article in English | MEDLINE | ID: covidwho-1865100

ABSTRACT

OBJECTIVE: The objective of this study is to assess the utility of a nucleic acid amplification test-based approach to shorten isolation of healthcare workers (HCWs) with COVID-19 in the setting of the highly transmissible omicron variant. METHODS: Between December 24, 2021, and January 5, 2022, HCWs who tested positive for SARS-CoV-2 were retested with PCR at least 5 days since onset of symptoms. RESULTS: Forty-six sequential fully COVID-19 vaccinated HCWs who had tested positive for SARS-CoV-2 underwent follow-up testing. All the samples were confirmed as omicron variants and only four (8.7%) were negative in the follow-up test performed at a median of 6 (range 5-12) since onset of symptoms. CONCLUSIONS: Implementation of a test-based strategy is logistically challenging, increases costs, and did not lead to shorter isolation in our institution.


Subject(s)
COVID-19 , Health Personnel , Humans , Nucleic Acid Amplification Techniques , Return to Work , SARS-CoV-2/genetics
5.
mSphere ; 7(3): e0017922, 2022 06 29.
Article in English | MEDLINE | ID: covidwho-1854243

ABSTRACT

To understand reinfection rates and correlates of protection for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we established eight different longitudinal cohorts in 2020 under the umbrella of the PARIS (Protection Associated with Rapid Immunity to SARS-CoV-2)/SPARTA (SARS SeroPrevalence And Respiratory Tract Assessment) studies. Here, we describe the PARIS/SPARTA cohorts, the harmonized assays and analysis that are performed across the cohorts, as well as case definitions for SARS-CoV-2 infection and reinfection that have been established by the team of PARIS/SPARTA investigators. IMPORTANCE Determining reinfection rates and correlates of protection against SARS-CoV-2 infection induced by both natural infection and vaccination is of high significance for the prevention and control of coronavirus disease 2019 (COVID-19). Furthermore, understanding reinfections or infection after vaccination and the role immune escape plays in these scenarios will inform the need for updates of the current SARS-CoV-2 vaccines and help update guidelines suitable for the postpandemic world.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Vaccines , Humans , Reinfection , Seroepidemiologic Studies
6.
Clin Infect Dis ; 75(1): e705-e714, 2022 08 24.
Article in English | MEDLINE | ID: covidwho-1852985

ABSTRACT

BACKGROUND: Following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or vaccination there is significant variability between individuals in protective antibody levels against SARS-CoV-2, and within individuals against different virus variants. However, host demographic or clinical characteristics that predict variability in cross-reactive antibody levels are not well-described. These data could inform clinicians, researchers, and policymakers on the populations most likely to require vaccine booster shots. METHODS: In an institutional review board-approved prospective observational cohort study of staff at St. Jude Children's Research Hospital, we identified participants with plasma samples collected after SARS-CoV-2 infection, after mRNA vaccination, and after vaccination following infection, and quantitated immunoglobulin G (IgG) levels by enzyme-linked immunosorbent assay to the spike receptor binding domain (RBD) from 5 important SARS-CoV-2 variants (Wuhan Hu-1, B.1.1.7, B.1.351, P.1, and B.1.617.2). We used regression models to identify factors that contributed to cross-reactive IgG against 1 or multiple viral variants. RESULTS: Following infection, a minority of the cohort generated cross-reactive antibodies, IgG antibodies that bound all tested variants. Those who did had increased disease severity, poor metabolic health, and were of a particular ancestry. Vaccination increased the levels of cross-reactive IgG levels in all populations, including immunocompromised, elderly, and persons with poor metabolic health. Younger people with a healthy weight mounted the highest responses. CONCLUSIONS: Our findings provide important new information on individual antibody responses to infection/vaccination that could inform clinicians on populations that may require follow-on immunization.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Aged , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Humans , Immunoglobulin G , Middle Aged , Prospective Studies , Spike Glycoprotein, Coronavirus , Vaccination
7.
Microbiol Spectr ; 9(2): e0105921, 2021 10 31.
Article in English | MEDLINE | ID: covidwho-1495012

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in late 2019 and has since caused a global pandemic resulting in millions of cases and deaths. Diagnostic tools and serological assays are critical for controlling the outbreak, especially assays designed to quantitate neutralizing antibody levels, considered the best correlate of protection. As vaccines become increasingly available, it is important to identify reliable methods for measuring neutralizing antibody responses that correlate with authentic virus neutralization but can be performed outside biosafety level 3 (BSL3) laboratories. While many neutralizing assays using pseudotyped virus have been developed, there have been few studies comparing the different assays to each other as surrogates for authentic virus neutralization. Here, we characterized three enzyme-linked immunosorbent assays (ELISAs) and three pseudotyped vesicular stomatitis virus (VSV) neutralization assays and assessed their concordance with authentic virus neutralization. The most accurate assays for predicting authentic virus neutralization were luciferase- and secreted embryonic alkaline phosphatase (SEAP)-expressing pseudotyped virus neutralizations, followed by green fluorescent protein (GFP)-expressing pseudotyped virus neutralization, and then the ELISAs. IMPORTANCE The ongoing COVID-19 pandemic is caused by infection with severe acute respiratory syndrome virus 2 (SARS-CoV-2). Prior infection or vaccination can be detected by the presence of antibodies in the blood. Antibodies in the blood are also considered to be protective against future infections from the same virus. The "gold standard" assay for detecting protective antibodies against SARS-CoV-2 is neutralization of authentic SARS-CoV-2 virus. However, this assay can only be performed under highly restrictive biocontainment conditions. We therefore characterized six antibody-detecting assays for their correlation with authentic virus neutralization. The significance of our research is in outlining the advantages and disadvantages of the different assays and identifying the optimal surrogate assay for authentic virus neutralization. This will allow for more accurate assessments of protective immunity against SARS-CoV-2 following infection and vaccination.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Serological Testing/methods , COVID-19/diagnosis , Neutralization Tests/methods , SARS-CoV-2/immunology , Adult , Enzyme-Linked Immunosorbent Assay/methods , Female , Humans , Male , Middle Aged , Protein Domains/immunology , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/immunology , Vesicular stomatitis Indiana virus/immunology , Vesicular stomatitis New Jersey virus/immunology
8.
Open Forum Infect Dis ; 8(9): ofab420, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1437840

ABSTRACT

The efficacy of coronavirus disease 2019 (COVID-19) vaccines administered after COVID-19-specific monoclonal antibody is unknown, and "antibody interference" might hinder immune responses leading to vaccine failure. In an institutional review board-approved prospective study, we found that an individual who received mRNA COVID-19 vaccination <40 days after COVID-19-specific monoclonal antibody therapy for symptomatic COVID-19 had similar postvaccine antibody responses to SARS-CoV-2 receptor binding domain (RBD) for 4 important SARS-CoV-2 variants (B.1, B.1.1.7, B.1.351, and P.1) as other participants who were also vaccinated following COVID-19. Vaccination against COVID-19 shortly after COVID-19-specific monoclonal antibody can boost and expand antibody protection, questioning the need to delay vaccination in this setting. TRIAL REGISTRATION: The St. Jude Tracking of Viral and Host Factors Associated with COVID-19 study; NCT04362995; https://clinicaltrials.gov/ct2/show/NCT04362995.

SELECTION OF CITATIONS
SEARCH DETAIL